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Abstract--A boundary integral equation formulation for transient heat conduction problems with tem- 
perature-dependent material properties is proposed. Direct regular method, a technique used in elastostatic 
boundary element analysis, is applied for numerical solution. In order to verify the validity of the present 
formulation, two problems are solved. Present results show good agreement with the exact solution and 
the results obtained by finite difference methods and finite element method. To evaluate the coefficients of 
discretized boundary integral equations, some integral formulae are used instead of numerical quadrature. 
Application ,~f these formulae can reduce the computation time to a large extent and achieve highly 

accurate evaluation. 

1. INTRODUCTION 

Analyses of nonlinear heat conduction problems 
become more important and of more interest in vari- 
ous engineering and science fields, since the studies of 
the phenomena under more severe and more com- 
plicated conditions are required. Various kinds of 
nonlinearities appear in heat conduction problems, 
for example, nonlinear heat source and sink, nonlinear 
boundary conditions such as radiation and nonlinear 
convective heat transfer on boundary, heat 
conduction with phase change and temperature- 
dependent material properties. To solve these non- 
linear problems, finite difference methods (FDM), 
finite element methods (FEM) and control volume 
method have been used commonly [14]. Boundary 
element method (BEM), which was found to be valid 
and efficient for linear heat conduction problems [5, 
6], has also been investigated in connection with the 
applications to nonlinear problems. Among those 
nonlinear problems, nonlinear heat sink and source, 
nonlinear boundary conditions and phase change 
problems have been studied and solved numerically 
[7-10], whereas noalinear heat conduction problems 
with temperature-dependent material properties, 
which are important in the case that the variation 
of material properties with temperature can not be 
neglected in the range of temperature concerned, were 
studied not from the numerical point of view, but just 
by linear modellin~s [7, 11, 12]. The results obtained 
from the linearized models are approximate solutions 
of the problems, bat could not reflect the nonlinear 
characteristics that the original problems have. The 
solutions of linearized models may not be able to 
provide us with the information required. Compared 

with FDM, FEM and control volume method, which 
have the techniques developed to solve this type of 
nonlinear problems, the lack of the techniques for 
these problems in BEM seems to be a defect of it. 

In the present study, a formulation of BEM for 
this kind of nonlinear heat conduction problems is 
proposed in order to resolve the disadvantage men- 
tioned above. It is easy to be implemented numerically 
and does not require any modellings. Derived bound- 
ary integral equation is discretized by usual boundary 
element techniques and the direct regular method 
(DRM). DRM is a technique that source points are 
located not on the boundary but outside the domain 
[13, 14]. By applying DRM, significant improvement 
of accuracy of solution is achieved. In order to confirm 
the validity of the present boundary integral formu- 
lation, two examples are solved. The first one is a 
problem whose exact solution is known, and the 
second is the one solved by some other methods [15]. 
Numerical results obtained by the present method 
show good agreement with the exact solution and the 
results reported by other authors. The comparison of 
the results proves the potential of the present bound- 
ary integral equation method (BIEM). 

In BEM and BIEM analysis of heat conduction 
problems, numerical quadratures are employed for 
the integrations of the fundamental solution to evalu- 
ate the coefficients of discretized equation system. This 
process consumes a large amount of computation 
time. In the present analysis, we use, instead of 
numerical quadrature, some integral formulae of the 
integrations of the fundamental solution of two- 
dimensional (2D) heat equation [16]. Application of 
these formulae can reduce computation time for the 
above process to a great extent and achieve the highly 
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c(T) specific heat 
C r a reference value of transformed 

specific heat 
H(u) defined in equation (9) 
k thermal conductivity 
n unit outer normal 
r position vector 
T temperature 
t time 
u KirchholTs-transformed temperature 
x horizontal coordinate 
y vertical coordinate. 

Greek symbols 
thermal diffusivity 

fi temperature coefficient for the specific 
heat 

F boundary of f2 
7 Euler's constant 
A Laplacian operator 

NOMENCLATURE 

K 

absolute error 
temperature coefficient for the thermal 
conductivity 

p density 
r time step 
92 domain under consideration. 

Subscripts 
b bottom 
1 left 
i source point 
r right 
t top. 

Superscripts 
exact exact solution 
num numerical solution 
* fundamental solution. 

accurate evaluations. As a result of it, the efficiency 
and the accuracy of the solution can be improved, and 
the re-calculation of the coefficients is shown to be 
practicable, which has seemed to be inefficient and 
unrealistic with numerical quadrature so far. 

2. FORMULATION 

The heat conduction equation with temperature- 
dependent thermal conductivity, density and specific 
heat in the form, 

p(T)c(T) ~5 = V" (k(T)VT) (1) 
et 

is considered. For the modification of this equation, 
Kirchhoff's transformation [1 1] 

u(T) = k(s) ds (2) 
o 

where To is an arbitrary constant, is employed. By 
performing this transformation, equation (1) is trans- 
formed to 

p(T)c(T) Ou 
- Au.  (3)  

k(T) ~t 

Defining C(u)= p(T)c(T)/k(T) and a (u )=  1/C(u), 
the above equation is rewritten as 

or equivalently 

~U 
C(u) ~ = Au (4) 

~ = a(u)au (5) 

where, of course, C(u) and a(u) may be assumed to be 
positive for all actual heat conduction problems. In 
order to derive a boundary integral equation from the 
equation (4), we employ the fundamental solution of 
the equation, 

0u 
C r ~ + Au = 0 (6) 

where Cr is a reference value of C(u). We will discuss 
the choice of this constant later in Section 4. In the 
2D case, the fundamental solution is 

~ ( Cr(r-r02~ 
u*(r,t;ri, ti)-47 z exp 4 ( t i - t )  J" (7) 

Using u*, a boundary integral equation is obtained as 

fof  " .  ) fo ¢iUi = ~ H  - - ~ - n  u d F d t +  [uC#*],=odf2 

- -  ( C ( u )  - -  Cr) u* d f l  d t  (8)  

where ci is a function of the location of source point 
and the geometry of the boundary [5]. 

In order to transform the nonlinear domain integral 
term on the right-hand side of equation (8) into the 
form convenient to treat numerically, we introduce a 
function [16, 17], 

g(u) = (C(s) -- Cr) ds (9) 
o 

where u0 is an arbitrary constant. We have its deriva- 
tive with respect to t as 
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OH &bl du du 
~t ~u ~t - (C(u)  - C )  - ~ .  ( lO)  

Substituting equation (10) into the nonlinear integral 
term, we have 

(C(u)--Cr)~Vu dfldt  = | w u * d f l d t .  
.)fl 

(11) 

Let the time discretization of BEM be recalled here 
for further reduction. We employ the constant element 
in time in the present formulation. This discretization 
postulates that the unknowns are constant in the semi- 
open time interval (0, z], namely, they are assumed to 
vary with time as shown in Fig. 1, and yield the fully 
implicit scheme [4, 5]. This postulate leads the fol- 
lowing approximation of the right-hand side of equa- 
tion ( l l )  as 

fl OH(u) * ~- f l  ~u* ~ - u  ot = [H(u)u*]~--~ - n(u)~t-dt  

[H(u)u*]~-~ -- [H(u)],=,[u*]',-~o 

= [kr(u)],,-~o[U*],_o 

= [H(u(r, r)) --H(u(r, 0))]u*(r, 0; ri, z). 

(12) 

Using this approximation, the boundary integral 
equation (8) is rewritten as 

CiUi~fl;v(~ll*--~U) dFdt 

+ f~ [Cru(r, O) -- H(u(r, z)) 

-bH(u(r,O))]u*(r,O;ri, z)d~. (13) 

It should be noted lhat the nonlinear domain integral 
term of this equation has been time-integrated and 
does not contain 8u/&. The boundary integral term is 

m . . . . . . . . . . . .  ~ . . . . . . . . . . . . . .  ~ . . . . . . . . . . . . . .  U k - 1  

o - -  . . . . . . . . . . . .  ~ . . . . . . . . . . . . .  U k 

. . . . . . . . . . . . .  U k + l  

..... U k + 2  

t k - 1  t k  t k + l  

time 

Fig. 1. Variation of Lemperature with time for boundary 
element scheme. 

to be integrated with respect to time by usual BEM 
technique. 

3. DISCRETIZATION 

In the present paper, 2D problems are solved by the 
present method. It is, however, easily seen that no 2D 
particular property is used and the 3D application is 
straightforward. 

The boundary integral equation (13) is discretized 
with linear continuous boundary and internal 
elements in space, and with constant elements in time 
as mentioned in the previous section. Double nodes 
are employed at the corners of boundary in order to 
allow for the discontinuities of the fluxes there [8]. 
The discretization of boundary and domain and the 
location of source points are described in Fig. 2. Uni- 
form space discretization is used here. 

To evaluate the coefficients of discretized equations, 
some integral formulae are used, which are presented 
in the Appendix, for integrations of the fundamental 
solution over boundary and internal elements. These 
formulae require much less computation time for the 
above process than numerical quadrature, e.g. Gauss- 
Legendre quadrature, and provide the evaluations 
with high accuracy. 

In order to improve the accuracy of solution, a 
technique locating the source points not on the bound- 
ary but inside and outside the domain is introduced. 
This technique is called the direct regular method 
(DRM), while the usual boundary element technique, 
which locates the source points on the boundary and 
in the domain is called the direct singular method 
(DSM) [13, 14]. The singular integrals encountered in 
the boundary integrations of fundamental solution in 
the case of DSM do not occur in the case of DRM. It 
is considered that this is one of the reasons that the 
accuracy of solution can be improved by DRM. In 
the location of source points for present analysis, the 
distances between the boundary and the source points 
outside the domain are once or ~/2 times as long as 
the length of a boundary element. Those distances are 
determined by following the numerical investigation 
about the variation of accuracy with the location for 
elastostatic problems by Yuuki et al. [13, 14]. To show 
the improvement of the accuracy by DRM for heat 
conduction problem, we take a 1D linear problem as 
an example ; 

x Source point outside f~ 
• Source point in f~ 

Y Ft 

£N~ X X X X X X X X X X X X X X X X X X X X 

.~..~.4.4.4..J,.#.~.4-~..~.4..~,.4-- ~,.+.~.44..I x _  
n × P4--.~-+4-+4-+-+-4 f~b-4--.~-4-4-4--.~.+-+--I ,, l r  

x 

. . . . . . . .  ! r . . . .  ~ T r , T v • " ~ X  

X X X X X X X X X X X  X X X X X X X  X X ~ X  

Fb 

Fig. 2. Domain under consideration and its discretization. 
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Fig. 3. Distributions of errors of DRM and D SM for a linear 
problem. 

OT c~2T 
- ( 1 4 )  

~3t •x 2 

T = x + l + s i n x  at t = 0  (15) 

T =  1 on x = 0  (16) 

T = g + l  on x = x .  (17) 

This has an exact solution 

T = x +  1 + e - '  sinx. (18) 

This problem is solved as an equivalent 2D problem 
with the additional boundary condition, 

c3T 
~n = 0 on F b W Ft. (19) 

Equally spaced 33 × 5 nodes and time step, z = 1/32 
are used for numerical solution for both D R M  and 
DSM. The behaviour of  accuracy improvement is 
shown in Fig. 3. The error e is defined as 

T . u m  Texact 

=1 TZ;aTt l (20) 

The error of  D R M  is about  one tenth as much as that 
of  DSM. The similar behaviour of  the improvement  
of  accuracy by D R M  can be observed for nonlinear 
problems. 

4. ILLUSTRATIVE EXAMPLES 

Nicolson scheme, and reported the results. In each 
example, nonlinear equations discretized by the pre- 
sent BIEM are solved numerically by Newton 's  iter- 
ation method. One to three iterations are needed for 
convergence. 

Example 1 is the problem given by 

OT ~2T 
T (21) 

~t 0x 2 

with initial and boundary conditions, 

T(x, O) = 1-½x2 (22) 

0T 
7n (0, t) = 0 (23) 

~T 1 
~n (1, t) = - l + t  (24) 

The equivalent equation, 

1 0T O2T 
- ( 2 5 )  

T 0t c~x 2 

is considered in the place of  equation (21). An exact 
solution of  this problem is 

1 
T(x, t) = ~ (1-½xZ). (26) 

This problem is also considered as a 2D one in a same 
manner as the linear example in the previous section. 
Equally spaced 33 × 5 nodes and time step, ~ = 1/32 
are used again. 

The constant Cr introduced in equation (6) is chosen 
as 3.0 for this example. This value is determined by 
the following consideration. In the space-time domain 
under consideration, [0,1] × [0,1], we have 
1/4 < T <  1, and therefore, 1 < C(T) = 1/T< 4. So 
the value of  Cr is selected as 3.0, which falls within 
the range where the last inequalities hold. Since the 
maximum and the minimum of temperature can be 
estimated a priori from the initial and the boundary 
conditions for most heat conduction problems, this 
way of  determination of  Cr can be generally applied. 

Figure 4 shows the comparison of  the present com- 

1.25 

1.0 

[.., 
0.75 

In order to demonstrate the validity of  the present 
BIEM, two examples are considered. There are few .~ 0.5 
nonlinear problems that have the known exact solu- # 

tion. Among  them is the first example (example 1). 0.25 
The result computed by the present method is com- 
pared with its exact solution. The second example 
(example 2) is a problem taken by Chen and Lin 0.0 
[15]. This is a nonlinear problem with the thermal 0.0 
conductivity and specific heat of  linear variation with 
temperature. They solved it by F D M  and F E M  with 
hybrid Laplace transform technique and the C r a n k -  

Exact 
t= 0.0 (Initial condition) o []A# Present 

• t= 0.5 
• t= 0.75 

t= 1.0 
t t. t 

0.25 0 5 0.75 1.0 

X 

Fig. 4. Comparison of the present and the exact solutions of 
example 1. 
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putational result with the exact solution. It is seen that 
the present result is in good agreement with the exact 
solution. It implies the validity of the present BIEM. 

Example 2 is giwen by the equation, 

~ T  ~3 k ( T ) ~ x  c(T)~- = ~xx ( ) (27) 

where 

and 

c(T) - -  l + # r  (28) 

k ( T )  = 1 + xT. (29) 
The coefficients fl and x are constants. The initial and 
the boundary conditions, 

7 - = 0  at t = 0  (30) 

T =  1 on x = 0  (31) 

7 - = 0  on x = l  (32) 

are imposed. By performing the Kirchhoff's trans- 
formation (2), 

f : r  T 2 (33) K 

u(T)  = k(s) ds = T +  
d To 

where To = 0, equations (27) and (30)-(32) are trans- 
formed to 

~u ~32u 
C(u) ff[ = ~?x 2 (34) 

where C(u) = c(T)/k(T) and 

u = 0  at t = 0  (35) 

x 
u =  1 + ~  on x = 0  (36) 

u = 0  on x = l  (37) 

respectively. Additional boundary condition (19) is 
transformed to 

Ou 
t?n=0 on FbwF~. (38) 

The present numerical solutions, the solutions 
obtained by the conventional forward-time centered- 
space explicit finite difference scheme and the fully 
implicit centered-space finite difference scheme, and 
the results by the Crank-Nicolson scheme and the 
FEM with hybrid Laplace transform (HLT FEM) 
that are reported by Chen and Lin [15], are shown in 
Tables 1-3. The constant C~ for the present method is 
chosen as 0.75 for all cases. In each case, 21 x 5 uni- 
formly located nodes are used for the present BIEM, 
uniform 21 nodes for the implicit FDM and the 
Crank-Nicolson scheme, uniform 11 nodes for the 
HLT FEM, and uniform 41 nodes for the explicit 
FDM. The time steps for each method are indicated 
in the tables. The HLT technique does not need time- 
step algorithm to reach a specific time [15]. It is con- 
venient to obtain the solution at a time, but is not 

II 

II 

¢-1 

5 

,.A 

e~ 

I 

"z. 
?, 

e x  ,~ t  

.fi 
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Table 2. Comparison of the results of example 2 for ~ = 0.5 at t = 0.5 

Present Explicit Crank- Implicit HLT Present Explicit Crank- Implicit HLT 
x BIEM FDM Nicolson FDM FEM BIEM FDM Nicolson FDM FEM 

z 1 /32  1/8330 1/100 1/300 1 /32  1/3120 1/100 1/300 
[ /= -0.5 /~ = 1.0 

0.2 0 .8283  0 . 8 2 8 3  0 . 8 2 8 3  0 . 8 2 8 3  0.8283 0.8247 0.8234 0 . 8 2 3 0  0.8230 0.8219 
0.4 0 . 6 4 5 5  0 . 6 4 5 5  0 . 6 4 5 5  0 . 6 4 5 5  0.6456 0.6394 0 .6371  0 . 6 3 6 5  0.6364 0.6347 
0.6 0 . 4 4 9 2  0.4492 0 . 4 4 9 2  0 . 4 4 9 2  0.4494 0.4427 0.4404 0 . 4 3 9 7  0.4396 0.4377 
0.8 0 . 2 3 5 9  0 . 2 3 5 9  0 . 2 3 5 9  0 . 2 3 5 8  0.2360 0.2315 0.2300 0.2296 0.2295 0.2283 

Table 3. Comparison of the results of example 2 for fl = 0.5 at t = 0.5 

Present Explicit Crank Implicit HLT Present Explicit Crank- Implicit HLT 
x BIEM FDM Nicolson FDM FEM BIEM FDM Nicolson FDM FEM 

r 1 /32  1/3120 1/100 1/300 1/32 1/4090 1/100 1/300 - -  
~c = -0 .5  K = 1.0 

0.2 0 . 7 2 3 8  0 .7201  0 . 7 1 9 2  0 . 7 1 9 5  0.7156 0.8431 0 . 8 4 3 1  0 . 8 4 3 0  0 . 8 4 2 9  0.8431 
0.4 0 .5021  0 . 4 9 7 6  0 . 4 9 7 0  0 . 4 9 6 8  0.4918 0.6719 0 . 6 7 1 8  0.6718 0 . 6 7 1 5  0.6718 
0.6 0.3144 0 . 3 1 0 8  0 .3101  0 . 3 1 0 2  0.3060 0.4817 0 . 4 8 1 5  0.4815 0 . 4 8 1 2  0.4815 
0.8 0.1494 0.1476 0 . 1 4 6 9  0 . 1 4 7 3  0.1451 0.2637 0.2636 0.2636 0.2634 0.2636 

suitable to trace the transient behaviour of  the prob- 
lem. The explicit F D M  is employed to obtain the 
reference solutions that can be thought to be close 
enough to the exact solutions. The time steps of  it are 
determined empirically so that the computat ion can 
be performed stably and accurately. For  example, the 
determined time steps, 1/4110 and 1/8330, can not be 
replaced with 1/4100 and 1/8320, respectively without 
loss of  stability and accuracy. The time step of  the 
implicit F D M ,  T = 1/100 in Table 1, is determined by 
taking account of  that of  the Crank Nicolson scheme 
taken by Chert and Lin. The result of  the implicit 
F D M  with T = 1/100 at t = 0.1 deviates considerably 
from the other results that are in good agreement with 
one another, while its computat ion is stable. The stabi- 
lity condition of  the implicit scheme is usually much 
weaker than that of  the explicit scheme, but the time 
step can not be taken so large with holding the accu- 
racy of  the computation.  In order to obtain the results 
as accurate as the other methods, z = 1/300, is taken 
for the implicit F D M  as shown in Table 1, and is 
used as well for the cases shown in Tables 2 and 3. 

In all tables, no significant difference is seen between 
the results by the present BIEM and the results by the 
explicit F D M  and other methods. It is suggested that 
still larger time step can be taken for the present 
method for the nonlinear problems than for the other 
methods. This advantage has been known for BEM 
for linear heat conduction problem [5, 6] and it seems 
to hold for the nonlinear problems. 

5. CONCLUSION 

A boundary integral equation formulation for tran- 
sient nonlinear heat conduction problems with tem- 
perature-dependent material properties is proposed. It 

is a direct extension of  BEM for linear heat conduction 
problems and is easy to numerically implement and 
apply to 2D and 3D problems. Since it does not 
require any modelling, the results can retain the non- 
linear characteristics of  the problem, which may be 
lost by linear modellings. 

D R M  is employed for the improvement of  accuracy 
of  solution. It is shown that, for the analysis of  heat 
conduction problems, the improvement by D R M  is 
significant. 

It can be seen, from the examples, that the present 
formulation with boundary element techniques and 
D R M  is valid enough to trace the transient nonlinear 
thermal response. Larger time steps than those of  the 
other methods can be taken to proceed the com- 
putation stably and accurately as usual BEM can for 
linear problems. 

Some integral formulae are used for the calculation 
of  the coefficients of  the discretized equations of  2D 
problem. Improvements of  both the efficiency and the 
accuracy of  the computat ion are achieved by using 
these formulae. By numerical quadrature,  it takes a 
long time to calculate the coefficients of  the equations 
derived by BEM and BIEM formulation, and the re- 
calculation of  them, which is required, for example, 
in the case of  the change of  time step z, increases 
the total computat ion time of  the analysis beyond 
practicality of  numerical solution. Therefore, it has 
been considered to be unrealistic with any numerical 
quadratures so far. The great deal of  reduction of  
computat ion time by using the integral formulae leads 
us to the possibility of  the practical re-calculation. In 
fact, the computat ion time for the calculation of  the 
coefficients is as long as the time that takes to obtain 
the solution at one time step in the present analysis. 
Its increase of  computat ion time is tolerable one. 
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As for the domain  integrat ions,  we present,  in the 
Appendix,  only fi)rmulae over rectangular  domain.  
Al though  the integrat ions over t r iangular  domains  are 
required for many  applications,  analytical  formulae  
for those integrat ions can not  be ob ta ined  or are too 
lengthy to take tee place of  numerical  quadratures .  
Therefore,  some numerical  quadra tu re  has  to be used 
for evaluat ions of  the integrat ions over t r iangular  
domains  for heat  conduc t ion  problems.  
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APPENDIX: INTEGRAL FORMULAE 

We present the integral formulae that are used for inte- 
grations of the fundamental solution u* of 2D heat con- 
duction equation, defined by equation (7) in Section 2. Prior 
to it, we define an exponential integral function E~ (x) and 
an error function erf(x) as 

and 

E l ( x ) = f  ®exp(-s)dsx s = y - l n l x [ - , = ~  (-X)'nn! 

e r f ( x ) = ~ f o e X p ( - s Z ) d s  

where 7 is Euler's constant. The evaluation of erf(x) can be 
performed easily and efficiently by making use of math- 
ematical library prepared on most computers. Hereafter, a, 
b, c, d and C are real constants such that ab > O, cd > 0 and 
C > 0 .  

Formulae used for boundary integrations of u* are as 
follows. 

i'Ez (C(x 2 + yZ)) dx = bEl (C(b 2 +y2)) 

( C(a z + y2) ) + ~ C e x  p ( _  Cy2)[erf (bx/ C) ~ a E I 

. . . . . . .  2 ~bexp(--C(x2 + y 2 ) ) -  
--erI(aVt~)l--zY I -~_2--2 ax (A1) 

,)~ x +y  

f E, (Cx z) dx = bE~ (Cb 2) - aE, (Ca 2) 

4~ + ~-~[erf(bx/C)-erf(ax/C)]  (A2) 

[imoxE 1 ( C x  2) = 0 (A3) 

a b xE, (C(x 2 + y~)) dx 

1 
= 2C [exp ( -  C(a 2 +y2)) - e x p  ( -  C(b ~ +y2))] 

+½[(b 2 + y2)E, ( C(b 2 + yZ) ) 

- (a z +yZ)E 1 (C(a 2 +y:))] (A4) 

l f  xE1 (Cx 2) dx = ½b2E, (Cb 2) --½a:El (Ca 2) 

1 
+ 2C [exp ( - Ca ~) - exp ( -  Cb2)] (A5) 

limoo x2 El ( Cx 2) = 0. (A6) 

Note that the numerical integration of integral term on 
the right-hand side of equation (A1) is easier than that of 
the left-hand side, and, due to the factor 2y 2, the integral 
on the right-hand side does not encounter the difficulty of 
singularity. The logarithmic singularities of the left-hand 
sides of equations (A2) and (A5) are transferred into first 
and second terms on the right-hand sides of each equation 
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and those singularities are resolved by equations (A3) and 
(A6). 

Formulae used for integrations of u* over rectangular 
domain are as follows. 

£a£b ~C b e x p (  - x 2 + y 2 ~ "  " ~ - F e r f ( - - )  
~o - -~ - )ox~y= L k4cl 

(:)][ (2) (c)] - e r r  - -  erf - -  - e r f  - -  (A7) 
C C C 

x exp - ~ )  ax ay 

4 b2 

[ ( : )  (2)] x e f t - - e f t -  (A8) 
C C 

~ye,p( X~)dxdy 
C~C'[e,p(_~)exp( ~)] 

x[erf~) orf~] ~a9, 

;;~exp~ x2+y2,. . k- -~-)oxoy 

= ~[exp(-~)-exp(- ~)] 

× [exp (- ~-)-exp(- ~)] ~A10~ 


